Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Manage ; 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145447

RESUMEN

Natural resource governance challenges are often highly complex, particularly in Indigenous contexts. These challenges involve numerous landscape-level interactions, spanning jurisdictional, disciplinary, social, and ecological boundaries. In Eeyou Istchee, the James Bay Cree Territory of northern Quebec, Canada, traditional livelihoods depend on wild food species like moose. However, these species are increasingly being impacted by forestry and other resource development projects. The complex relationships between moose, resource development, and Cree livelihoods can limit shared understandings and the ability of diverse actors to respond to these pressures. Contributing to this complexity are the different knowledge systems held by governance actors who, while not always aligned, have broadly shared species conservation and sustainable development goals. This paper presents fuzzy cognitive mapping (FCM) as a methodological approach used to help elicit and interpret the knowledge of land-users concerning the impacts of forest management on moose habitat in Eeyou Istchee. We explore the difficulties of weaving this knowledge together with the results of moose GPS collar analysis and the knowledges of scientists and government agencies. The ways in which participatory, relational mapping approaches can be applied in practice, and what they offer to pluralistic natural resource governance research more widely, are then addressed.

2.
Sci Total Environ ; 879: 163024, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36965735

RESUMEN

Recent increases in the demand for rare earth elements (REE) have contributed to various countries' interest in exploration of their REE deposits, including within Canada. Current limited knowledge of REE distribution in undisturbed subarctic environments and their bioaccumulation within northern species is addressed through a collaborative community-based environmental monitoring program in Nunavik (Quebec, Canada). This study provides background REE values (lanthanides + yttrium) and investigates REE anomalies (i.e., deviations from standard pattern) across terrestrial, freshwater, and marine ecosystems in an area where a REE mining project is in development. Results are characteristic of a biodilution of REE, with the highest mean total REE concentrations (ΣREE) reported in sediments (102 nmol/g) and low trophic level organisms (i.e., biofilm, macroalgae, macroinvertebrates, common mussels, and reindeer lichens; 101-102 nmol/g), and the lowest mean concentrations in higher-level consumers (i.e., goose, ptarmigan, char, whitefish, cod, sculpin and seal; 10-2 - 101 nmol/g). The animal tissues are of importance to northern villages and analyses demonstrate a species-specific bioaccumulation of REE, with mean concentrations up to 40 times greater in liver compared to muscle, with bones and kidneys presenting intermediate concentrations and the lowest in blubber. Further, a tissue-specific fractionation was presented, with significant light REE (LREE) enrichment compared to heavy REE (HREE) in consumer livers (LREE/HREE ≅ 101) and the most pronounced negative cerium (Ce) anomalies (<0.80) in liver and bones of fish species. These fractionation patterns, along with novel negative relationships presented between fish size (length, mass) and Ce anomalies suggest metabolic, ecological, and/or environmental influences on REE bioaccumulation and distribution within biota. Background concentration data will be useful in the establishment of REE guidelines; and the trends discussed support the use of Ce anomalies as biomarkers for REE processing in animal species, which requires further investigation to better understand their controlling factors.


Asunto(s)
Cerio , Metales de Tierras Raras , Salmonidae , Animales , Canadá , Cerio/análisis , Ecosistema , Bioacumulación , Metales de Tierras Raras/análisis , Monitoreo del Ambiente/métodos , Biota
3.
Sci Total Environ ; 841: 156566, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35697218

RESUMEN

Arctic Indigenous Peoples are among the most exposed humans when it comes to foodborne mercury (Hg). In response, Hg monitoring and research have been on-going in the circumpolar Arctic since about 1991; this work has been mainly possible through the involvement of Arctic Indigenous Peoples. The present overview was initially conducted in the context of a broader assessment of Hg research organized by the Arctic Monitoring and Assessment Programme. This article provides examples of Indigenous Peoples' contributions to Hg monitoring and research in the Arctic, and discusses approaches that could be used, and improved upon, when carrying out future activities. Over 40 mercury projects conducted with/by Indigenous Peoples are identified for different circumpolar regions including the U.S., Canada, Greenland, Sweden, Finland, and Russia as well as instances where Indigenous Knowledge contributed to the understanding of Hg contamination in the Arctic. Perspectives and visions of future Hg research as well as recommendations are presented. The establishment of collaborative processes and partnership/co-production approaches with scientists and Indigenous Peoples, using good communication practices and transparency in research activities, are key to the success of research and monitoring activities in the Arctic. Sustainable funding for community-driven monitoring and research programs in Arctic countries would be beneficial and assist in developing more research/monitoring capacity and would promote a more holistic approach to understanding Hg in the Arctic. These activities should be well connected to circumpolar/international initiatives to ensure broader availability of the information and uptake in policy development.


Asunto(s)
Mercurio , Regiones Árticas , Canadá , Groenlandia , Humanos , Pueblos Indígenas
4.
Chemosphere ; 294: 133640, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35051521

RESUMEN

We measured concentrations of 19 trace elements and mercury speciation in grey seals (Halichoerus grypus) from the Gulf of St. Lawrence (GSL), Canada. With interest growing in commercializing grey seal products for human consumption in this region, our goal was to measure essential and non-essential trace elements in grey seals to evaluate health concerns and nutritional benefits. From 2015 to 2019, 120 grey seals were sampled by hunters and researchers at 4 sites in the GSL. Muscle, liver, heart and kidney samples were analyzed for 10 non-essential elements (Sb, As, Be, B, Cd, Pb, Hg, Ni, Tl, Sn) and 9 essential elements (Co, Cr, Cu, Fe, Mg, Mn, Mo, Se, Zn). Both total mercury (THg) and methylmercury (MeHg) were analyzed for a subset of samples. Results showed a two-step bioaccumulation pattern with lower element concentrations in the muscle (Fe, Mg, Se) and livers (Cd, Cr, Hg, Mn, Mo, Se) of young-of-the-year harvested in the winter (<6 wks old) compared to older animals feeding at sea. We did not observe progressive age-dependent bioaccumulation for older seals (∼5 mos-29 yrs). Sex-specific differences were not very pronounced, but a few elements were 30-70% higher in the muscle (THg, MeHg) and liver (Mn, Zn) of male seals. Comparison to Canadian dietary reference intakes shows that a weekly portion of liver from young-of-the-year (<6 wks old) is a good source of essential elements (Cu, Fe) and that muscle and liver from this age category do not exceed reference values for toxic elements (As, Cd, Pb, MeHg). Discussions with regional public health professionals are on-going to develop dietary recommendations for the consumption of older grey seals.


Asunto(s)
Phocidae , Oligoelementos , Factores de Edad , Animales , Bioacumulación , Canadá , Femenino , Humanos , Masculino , Oligoelementos/análisis
5.
Environ Pollut ; 268(Pt B): 115820, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33120140

RESUMEN

Diet, age, and growth rate influences on fish mercury concentrations were investigated for Arctic char (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) in lakes of the eastern Canadian Arctic. We hypothesized that faster-growing fish have lower mercury concentrations because of growth dilution, a process whereby more efficient growth dilutes a fish's mercury burden. Using datasets of 57 brook trout and 133 Arctic char, linear regression modelling showed fish age and diet indices were the dominant explanatory variables of muscle mercury concentrations for both species. Faster-growing fish (based on length-at-age) fed at a higher trophic position, and as a result, their mercury concentrations were not lower than slower-growing fish. Muscle RNA/DNA ratios were used as a physiological indicator of short-term growth rate (days to weeks). Slower growth of Arctic char, inferred from RNA/DNA ratios, was found in winter versus summer and in polar desert versus tundra lakes, but RNA/DNA ratio was (at best) a weak predictor of fish mercury concentration. Net effects of diet and age on mercury concentration were greater than any potential offset by biomass dilution in faster-growing fish. In these resource-poor Arctic lakes, faster growth was associated with feeding at a higher trophic position, likely due to greater caloric (and mercury) intake, rather than growth efficiency.


Asunto(s)
Mercurio , Salmonidae , Contaminantes Químicos del Agua , Animales , Regiones Árticas , Canadá , Dieta , Monitoreo del Ambiente , Lagos , Mercurio/análisis , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 53(3): 1650-1660, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30585722

RESUMEN

Human activities have resulted in significant release of rare earth elements (REEs) into the environment. However, the pathways of REEs from waters and soils into freshwater food webs remain poorly understood. Recent studies suggest that aquatic invertebrates may be good biomonitors for REEs, yet there is little information on factors that control REE bioaccumulation in these organisms. Our goal was to study the environmental drivers of REE levels in zooplankton, a key component in plankton food webs, across lakes from geographic areas with different bedrock geology. From 2011 to 2014, bulk zooplankton samples were collected for REE analysis from 39 lakes in eastern Canada. We observed a more than 200 fold variation in surface water REE concentrations and a 10-fold variation in sediment REE concentrations. These concentration gradients were associated with a range of more than an order of magnitude in zooplankton REE concentrations (∑REEY 3.2-210 nmol g-1). We found higher REE bioaccumulation in zooplankton from lakes with lower pH and higher REE to dissolved organic carbon ratios. Bioaccumulation was also strongly linked to the free ion concentrations of REEs (REE3+) in surface waters. Our study suggests that zooplankton REE bioaccumulation is an excellent predictor of bioavailable REEs in freshwaters.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Animales , Canadá , Monitoreo del Ambiente , Humanos , Zooplancton
7.
Environ Sci Technol ; 52(1): 79-88, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29172471

RESUMEN

We investigated monomethylmercury (MMHg) bioaccumulation in lakes across a 30° latitudinal gradient in eastern Canada to test the hypothesis that climate-related environmental conditions affect the sensitivity of Arctic lakes to atmospheric mercury contamination. Aquatic invertebrates (chironomid larvae, zooplankton) provided indicators of MMHg bioaccumulation near the base of benthic and planktonic food chains. In step with published data showing latitudinal declines in atmospheric mercury deposition in Canada, we observed lower total mercury concentrations in water and sediment of higher latitude lakes. Despite latitudinal declines of inorganic mercury exposure, MMHg bioaccumulation in aquatic invertebrates did not concomitantly decline. Arctic lakes with greater MMHg in aquatic invertebrates either had (1) higher water MMHg concentrations (reflecting ecosystem MMHg production) or (2) low water concentrations of MMHg, dissolved organic carbon (DOC), chlorophyll, and total nitrogen (reflecting lake sensitivity). The MMHg:DOC ratio of surface water was a strong predictor of lake sensitivity to mercury contamination. Bioaccumulation factors for biofilms and seston in Arctic lakes showed more efficient uptake of MMHg in low DOC systems. Environmental conditions associated with low biological production in Arctic lakes and their watersheds increased the sensitivity of lakes to MMHg.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Regiones Árticas , Canadá , Carbono , Ecosistema , Monitoreo del Ambiente , Cadena Alimentaria , Lagos , Agua
8.
Environ Sci Technol ; 51(11): 6009-6017, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28440648

RESUMEN

Many mining projects targeting rare earth elements (REE) are in development in North America, but the background concentrations and trophic transfer of these elements in natural environments have not been well characterized. We sampled abiotic and food web components in 14 Canadian temperate lakes unaffected by mines to assess the natural ecosystem fate of REE. Individual REE and total REE concentrations (sum of individual element concentrations, ΣREE) were strongly related with each other throughout different components of lake food webs. Dissolved organic carbon and dissolved oxygen in the water column, as well as ΣREE in sediments, were identified as potential drivers of aqueous ΣREE. Log10 of median bioaccumulation factors ranged from 1.3, 3.7, 4.0, and 4.4 L/kg (wet weight) for fish muscle, zooplankton, predatory invertebrates, and nonpredatory invertebrates, respectively. [ΣREE] in fish, benthic macroinvertebrates, and zooplankton declined as a function of their trophic position, as determined by functional feeding groups and isotopic signatures of nitrogen (δ15N), indicating that REE were subject to trophic dilution. Low concentrations of REE in freshwater fish muscle compared to their potential invertebrate prey suggest that fish fillet consumption is unlikely to be a significant source of REE to humans in areas unperturbed by mining activities. However, other fish predators (e.g., piscivorous birds and mammals) may accumulate REE from whole fish as they are more concentrated than muscle. Overall, this study provides key information on the baseline concentrations and trophic patterns for REE in freshwater temperate lakes in Quebec, Canada.


Asunto(s)
Cadena Alimentaria , Metales de Tierras Raras , Contaminantes Químicos del Agua , Animales , Canadá , Monitoreo del Ambiente , Peces , Humanos , Lagos , Minería , América del Norte , Quebec
9.
Environ Sci Technol ; 49(13): 7743-53, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26030209

RESUMEN

Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L(-1)). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3-2.2 ng L(-1)) than polygonal ponds (0.1-0.3 ng L(-1)) or lakes (<0.1 ng L(-1)). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1-3.1 ng L(-1)). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems.


Asunto(s)
Compuestos de Metilmercurio/análisis , Estanques/análisis , Contaminantes Químicos del Agua/análisis , Regiones Árticas , Canadá , Dióxido de Carbono/análisis , Ecosistema , Monitoreo del Ambiente , Calentamiento Global , Lagos/análisis , Mercurio/análisis , Metano/análisis , Nitrógeno/análisis , Nunavut , Fósforo/análisis , Estanques/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...